Противостояние планеты Юпитер в 2004 годуЮпитер в противостоянии в 2004 годуВид Юпитера в телескоп Этот великолепный снимок Юпитера сделан аппаратом "Кассини", который направляется к Сатурну. Группа слежения за "Кассини" сформировала его из снимков космического аппарата. Это изображение позволяет подробно рассмотреть Юпитер - планета видна с разрешением в 60 км. Космический корабль сделал серию из 27 снимков в течение часа 29 декабря 2000 года. Отдельные фото затем были совмещены вместе при помощи компьютера, принимая во внимание вращение Юпитера и перемещение космического корабля.
Спектральные исследования Юпитера показали, что атмосфера его состоит из молекулярного водорода и его соединений: метана и аммиака. В небольших количествах присутствуют также этан, ацетилен, фосфен и водяной пар. Облака Юпитера состоят из кристалликов и капелек аммиака. В атмосфере планеты удалось обнаружить наличие гелия и измерить его содержание. Можно считать, что атмосфера Юпитера на 74% состоит из водорода и на 26% из гелия. На долю метана приходится не более 0,1% состава атмосферы планеты. Атмосферный слой имеет толщину около 1000 км. Ниже чисто газового слоя в атмосфере лежит слой облаков, которые мы и видим в телескоп. В настоящее время построена двухслойная модель внутреннего строения планеты. Оболочка планеты состоит в основном из газовой компоненты (водород, гелий, неон), а ядро - из тяжелой компоненты (оксиды кремния, магния и железа, сульфиды, железо, никель и др.). Слой жидкого молекулярного водорода имеет толщину 24000 км. На этой глубине давление достигает 300 ГПа, а температура 11000 К, здесь водород переходит в жидкое металлическое состояние, т.е. становится подобным жидкому металлу. Слой жидкого металлического водорода имеет толщину около 42000 км. Внутри него располагается небольшое железно-силикатное твердое ядро радиусом 4000 км. На границе ядра температура достигает 30000 К. По массе ядро Юпитера составляет 3-4% от полной массы. Юпитера обладает радиоизлучением на волне 3 см, что соответствует тепловому излучению с температурой 145 К. По измерениям в инфракрасном диапазоне температура самых наружных облаков Юпитера 130 К. Полеты американских космических аппаратов позволили уточнить строение магнитосферы Юпитера, а изменение температуры облачного слоя в основном подтвердило известный из наземных наблюдений результат: количество тепла, которое Юпитер испускает, более чем вдвое превышает тепловую энергию, которую планета получает от Солнца. Возможно, что идущее из недр планеты тепло выделяется в процесс медленного сжатия гигантской планеты (1мм. в год). Магнитное поле планеты оказалось сложным и состоит как бы из двух полей: дипольного (как поле Земли), которое простирается до 1,5 млн. км от Юпитера, и не дипольного, занимающего остальную часть магнитосферы. Напряженность магнитного поля у поверхности в 20 раз больше, чем на Земле. Кроме теплового и дециметрового радиоизлучения Юпитер является источником радиовсплесков (резких усилений мощности излучения) на волнах длиной от 4 до 85 м, продолжительностью от долей секунды до нескольких минут или даже часов. Однако длительные возмущения - это не отдельные всплески, а серии всплесков - своеобразные шумовые бури и грозы. Согласно современным гипотезам, эти всплески объясняются плазменными колебаниями в ионосфере планеты. Спутники Юпитер имеет 20 спутников и их число растет, т.к. открываются новые небольшие спутники-астероиды. Первые 4 спутника открыты еще Галилеем - Ио, Европа, Ганимед, Каллисто.
В 1976 г. космофизики М. Акунья и Н. Несс из Годдардовского центра космических полетов НАСА анализировали информацию, полученную от "Пионера-11", и заметили какие-то странные отклонения в межпланетном магнитном поле в окрестностях Юпитера. Так как отклонения были зафиксированы, когда "Пионер-11" проходил всего в 43000 км над верхушками юпитерианских облаков, то есть совсем близко к планете, где "возмутителей магнитного спокойствия", казалось бы, не существовало, это требовало особого объяснения. Акунья и Несс предложили на выбор несколько и среди них такое: примерно в 59000 км от Юпитера проходит кольцо, которое и влияет на магнитное поле планеты.
Наблюдения Юпитера
Такой же вид предстанет взору наблюдателя и для других городов на широте Москвы. Для остальных городов высота Юпитера над горизонтом будет выше, если наблюдатель находится южнее широты Москвы и ниже, если наблюдатель находится севернее широты Москвы. На момент противостояния Юпитер будет находиться созвездии Льва, как "лишняя" звезда. Его блеск составит -2,5m, а диаметр - 44". Почти полная Луна будет находиться недалеко от Юпитера, но она не будет мешать наблюдениям планеты и спутников, т.к. и планета и спутники достаточно ярки. Сейчас планета движется попятно, описывая закономерную петлю в движении относительно Земли, и почти весь наблюдательный сезон 2004 года (до сентября месяца) будет находиться в созвездии Льва. Даже в малые телескопы, начиная от телескопов с диаметром объектива от 60 мм и выше, можно наблюдать полосы на диске Юпитера. Полноценные наблюдения Юпитера можно провести с телескопом от 100 мм в диаметре. На таком телескопе можно наблюдать детали на поверхности Юпитера, а так же знаменитое Красное пятно.
Интересно, а что в это время можно наблюдать с Юпитера?
темное пятно на этих снимках наблюдавшееся осенью 2003 года), которые видны и в малые телескопы, и их наблюдения представляют большой интерес, особенно при использовании светофильтров. Для зарисовки планеты необходимо приготовить шаблон диска планеты. Учитывая сжатие планеты при вращении, диск ее не является идеальным кругом, а представляет собой овал, то для зарисовок Юпитера применяются овальные диски, вычерчиваемые следующим образом: проводится горизонтальная линия длиной в 50 мм - она будет изображать экваториальный диаметр планеты. На ней отмечается центр, и на расстоянии 2,5 мм от центра наносятся четыре точки: выше его, ниже и по бокам. Затем циркулем проводятся четыре дуги: из верхней точки вниз и из нижней точки вверх радиусом в 26 мм, из боковых точек - радиусом в 22,5 мм. Каждая дуга охватывает 90°, и все они будут служить продолжением одна другой. Разумеется, такое построение не нужно делать для каждого рисунка, а лучше заранее заготовить картонный шаблон и обводить его карандашом. При этом нужно учесть, что шаблон должен быть меньше нужного размера на 1-1,5 мм. Зарисовка проводится остро отточенным карандашом, при чем сначала зарисовываются наиболее четкие детали и относительно их остальные детали. Необходимо помнить, что на зарисовку отводится около 10 минут, т.к. быстрое вращение Юпитера приведет к искажению картины. При накоплении достаточного количества зарисовок можно составить карту Юпитера на данный день.
Фотографирование планеты можно производить с диаметром телескопа от 150 мм и выше. Это должны быть длиннофокусные телескопы, т.к. чем больше фокусное расстояние телескопа, тем больше диск планеты на фотопленке. Но и при этом планету нужно будет фотографировать с окулярным увеличением, т.е. присоединив фотоаппарат без объектива к окуляру телескопа с помощью переходника. Эквивалентное фокусное расстояние телескопа можно увеличить, применяя линзу Барлоу, устанавливая ее между окуляром телескопа и точкой фокуса. Эквивалентное фокусное расстояние при фотографировании Юпитера может быть от 5000 мм до 10000 мм. Выдержка при таких фокусных расстояниях будет составлять 2-4 секунды при чувствительности пленки 100-200 ед., поэтому для получения четких снимков планеты потребуется автоматическое гидирование при помощи часового привода.
Вот снимки Юпитера и его спутников, сделанные любителями астрономии. Галилеевы спутники Юпитера. Авторы: С. Терников, А. Коробейник, г. Москва. Телескоп: ТАЛ-120М, D=120 мм, F=805 мм. Пленка: Fuji Superia 400. Выдержка: 15 cекунд. Юпитер. Снимок получен 3 августа 1999 года. Автор: Г. В. Борисов, пос. Научный, Украина. Телескоп: "Цейсс-600" (D=600 мм, F=30 м). Пленка: Fuji Superia 200. Выдержка: примерно 1 секунда. Снимок получен 2 октября 1999 года. Сopyright 2002-2023 © Сайт "Галактика" • Проект "Астрономическая энциклопедия" • Идея, дизайн, хостинг, веб-мастер сайта - Кременчуцкий Александр, Москва. |